on the harmonic index of graph operations
Authors
abstract
the harmonic index of a connected graph $g$, denoted by $h(g)$, is defined as $h(g)=sum_{uvin e(g)}frac{2}{d_u+d_v}$ where $d_v$ is the degree of a vertex $v$ in g. in this paper, expressions for the harary indices of the join, corona product, cartesian product, composition and symmetric difference of graphs are derived.
similar resources
The Hyper-Zagreb Index of Graph Operations
Let G be a simple connected graph. The first and second Zagreb indices have been introduced as vV(G) (v)2 M1(G) degG and M2(G) uvE(G)degG(u)degG(v) , respectively, where degG v(degG u) is the degree of vertex v (u) . In this paper, we define a new distance-based named HyperZagreb as e uv E(G) . (v))2 HM(G) (degG(u) degG In this paper, the HyperZagreb index of the Cartesian p...
full textReformulated F-index of graph operations
The first general Zagreb index is defined as $M_1^lambda(G)=sum_{vin V(G)}d_{G}(v)^lambda$. The case $lambda=3$, is called F-index. Similarly, reformulated first general Zagreb index is defined in terms of edge-drees as $EM_1^lambda(G)=sum_{ein E(G)}d_{G}(e)^lambda$ and the reformulated F-index is $RF(G)=sum_{ein E(G)}d_{G}(e)^3$. In this paper, we compute the reformulated F-index for some grap...
full textA note on hyper-Zagreb index of graph operations
In this paper, the Hyper - Zagreb index of the Cartesian product, composition and corona product of graphs are computed. These corrects some errors in G. H. Shirdel et al.[11].
full textComputing GA4 Index of Some Graph Operations
The geometric-arithmetic index is another topological index was defined as 2 deg ( )deg ( ) ( ) deg ( ) deg ( ) G G uv E G G u v GA G u v , in which degree of vertex u denoted by degG (u). We now define a new version of GA index as 4 ( ) 2 ε ( )ε ( ) ( ) ε ( ) ε ( ) G G e uv E G G G u v GA G u v , where εG(u) is the eccentricity of vertex u. In this paper we compute this new t...
full textA Note on Revised Szeged Index of Graph Operations
Let $G$ be a finite and simple graph with edge set $E(G)$. The revised Szeged index is defined as $Sz^{*}(G)=sum_{e=uvin E(G)}(n_u(e|G)+frac{n_{G}(e)}{2})(n_v(e|G)+frac{n_{G}(e)}{2}),$ where $n_u(e|G)$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$ and $n_{G}(e)$ is the number of equidistant vertices of $e$ in $G$. In this paper...
full textThe Generalized Wiener Polarity Index of some Graph Operations
Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.
full textMy Resources
Save resource for easier access later
Journal title:
transactions on combinatoricsPublisher: university of isfahan
ISSN 2251-8657
volume 4
issue 4 2015
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023